

NTSB National Transportation Safety Board

Using Collaboration to Manage

Enterprise Risk

Presentation to:

5th Annual Federal Enterprise Risk Management Summit Safety

Name: Christopher A. Hart

Date: September 18, 2012

Outline

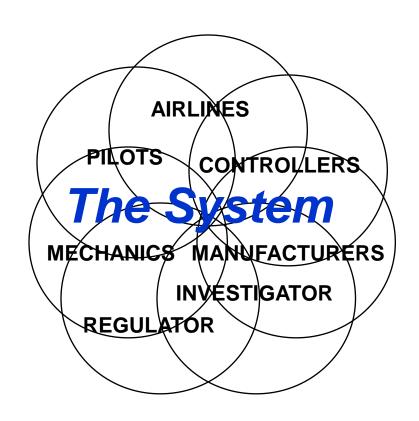
Aviation Collaboration Success Story

- By aircraft manufacturers
- At the industry level

Win-win: Collaboration Can

- Improve safety
- Improve productivity
- Reduce likelihood of unintended consequences

Applicability to Other Industries?


The Challenge: Increasing Complexity

More System

Interdependencies

- Large, complex, interactive system
- Often tightly coupled
- Hi-tech components
- Continuous innovation
- Ongoing evolution
- Risk Management Issues Are More Likely to Involve

Interactions Between Parts of the System

Effects of Increasing Complexity:

More "Human Error" Because

- System More Likely to be Error Prone
- Operators More Likely to Encounter Unanticipated Situations
- Operators More Likely to Encounter Situations in Which "By the Book" May Not Be Optimal ("workarounds")

The Result:

Front-Line Staff Who Are

- Highly Trained
 - Competent
 - Experienced,
- -Trying to Do the Right Thing, and
 - Proud of Doing It Well

... Yet They Still Commit

Inadvertent Human Errors

The Solution: System Think

Understanding how a change in one subsystem of a complex system may affect other subsystems within that system

Objectives:

Make the System

(a) Less Error Prone and

(b) More Error Tolerant

The Health Care Industry

To Err Is Human:

Building a Safer Health System

"The focus must shift from blaming individuals for past errors to a focus on preventing future errors by designing safety into the system."

Institute of Medicine, Committee on Quality of Health Care in America, 1999

Major Paradigm Shift

How It Is Now . . .

You are highly trained

and

If you did as trained, you would not make mistakes

SO

You weren't careful enough

SO

How It Should Be . . .

You are human

and

Humans make mistakes

SO

Let's also explore why the system allowed, or failed to accommodate, your mistake

and

You should be PUNISHED! Let's IMPROVE THE SYSTEM!

"System Think" via Collaboration

Bringing all parts of a complex system together to collaboratively

- Identify potential issues
- PRIORITIZE the issues
- Develop solutions for the prioritized issues
- Evaluate whether the solutions are
 - Accomplishing the desired result, and
 - Not creating unintended consequences

Aircraft Manufacturer "System Think"

Aircraft manufacturers are increasingly seeking input, from the earliest phases of the design process, from

- Pilots

(*User* Friendly)

- Mechanics

(Maintenance Friendly)

- Air Traffic Services

(System Friendly)

Some System Challenges

- Cali, Colombia, 1996
- Turkish Airlines Flight 1951, 2009
- Washington Metro, 2009
- Landing on the Hudson, 2009
- Air France Flight 447, 2009

Inadequate System Think

- 1995 Cali, Colombia
- Risk Factors
 - Night
 - Airport in deep valley
 - No ground radar
 - Airborne terrain alerting limited to "look-down"
 - Last minute change in approach
 - More rapid descent (throttles idle, spoilers)
 - Hurried reprogramming
- Navigation Radio Ambiguity
- Spoilers Do Not Retract With Power

Recommended Remedies Include:

Operational

— Caution re last minute changes to the approach!!

Aircraft/Avionics

- Enhanced ground proximity warning system
- Spoilers that retract with max power
- Require confirmation of non-obvious changes
- Unused or passed waypoints remain in view

Infrastructure

- Three-letter navigational radio identifiers
- Ground-based radar
- Improved reporting of, and acting upon, safety issues

Note: All but one of these eight remedies address system issues

Turkish Airlines Flight 1951

The Conditions

- Malfunctioning left-side radar altimeter
- Pilots selected right-side autopilot
- Aircraft vectored above glideslope
- Autothrust commanded throttles to idle

- Unknown to pilots, right-side autopilot was using left-side radar altimeter
- Autothrust hampered attempted go-around

Queries:

- Autopilot defaults to same-side altitude information?
- Tell pilots source of information, let them select?

Metro, Washington DC

The Conditions

- Electronic collision prevention
- Parasitic electronic oscillation
- Stopped (struck) train became electronically invisible
- Following (striking) train accelerated
- Stopped train was on curve

Queries:

- Train "disappearance" warning in dispatch center?
- Train "disappearance" warning in following trains?

One Lesson Learned:

Over-warning may be worse than no warning

Landing on the Hudson

- Complete and irreparable failure of both engines after takeoff
- No training or checklist, but previous glider experience
- Pilots did not know about phugoid damping in software

- Phugoid damping did not allow full nose-up alpha
- Pilots less able to reduce vertical impact speed

Air France Flight 447

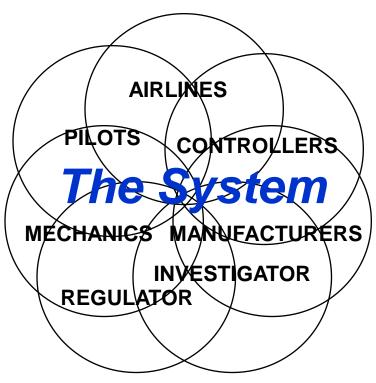
The Conditions

- Cruise, autopilot engaged
- Night, in clouds, turbulence, coffin corner
- Pitot tubes blocked with ice
- Autopilot inoperative without airspeed

Pilots' responses inappropriate

Query

– Pilot training re loss of airspeed information in cruise?


Collaboration at the Aviation System Level?

- Mid-1990's, U.S. fatal commercial accident rate, although commendably low, had stopped declining
 - Volume of commercial flying was projected to double within 15-20 years
- Simple arithmetic: Doubling volume x flat rate = doubling of fatal accidents
- Major problem because public pays attention to the number of fatal accidents, not the rate

Commercial Aviation Safety Team (CAST)

Engage All Participants In Identifying Problems and Developing and Evaluating Remedies

- Airlines
- Manufacturers
- Air Traffic Organizations
- Labor
 - Pilots
 - Mechanics
 - Air traffic controllers
- Regulator(s)

Collaboration Success Story

65% Decrease in Fatal Accident Rate, 1997 - 2007

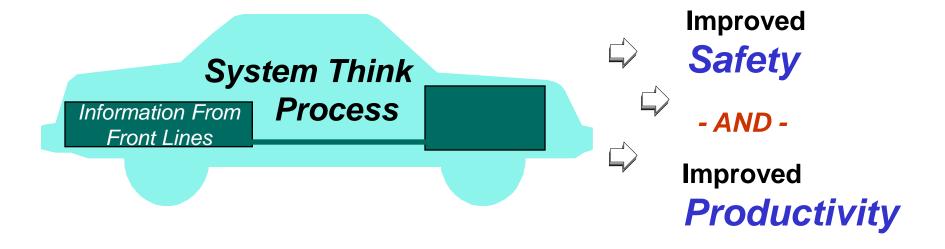
largely because of

System Think

fueled by

Proactive Safety Information Programs

P.S. Aviation was already considered *VERY SAFE* in 1997!!


Major Paradigm Shift

- Old: The regulator identifies a problem, develops solutions
 - Industry skeptical of regulator's understanding of the problem
 - Industry fights regulator's solution and/or implements it begrudgingly
- New: Collaborative "System Think"
 - Industry involved in identifying problem
 - Industry "buy-in" re solution because everyone had input, everyone's interests considered
 - Prompt and willing implementation
 - Solution probably more effective and efficient
 - Unintended consequences much less likely

Challenges of Collaboration

- Human nature: "I'm doing great . . . the problem is everyone else"
- Differing and sometimes competing interests
 - Labor-management issues between participants
 - Participants are potential adversaries
- Regulator not welcome
- Not a democracy
 - Regulator must regulate
- Requires all to be willing, in their enlightened self-interest, to leave their "comfort zone" and think of the System

Icing on the Cake: A Win-Win

The Pleasant Surprise

Conventional Wisdom:

Improvements that reduce risk usually also reduce productivity

- The Reality:

Risk reduction programs are usually a **NON-STARTER** if they hurt productivity

Lesson Learned from the CAST process:

Risk can be reduced in a way that also results in immediate productivity improvements

The Role of Leadership

- Demonstrate Safety Commitment . . .

But Acknowledge That Mistakes Will Happen

- Include "Us" (e.g., System) Issues,

Not Just "You" (e.g., Training) Issues

- Make Safety a Middle Management Metric
 - Engage Labor Early
 - Include the **System** --

Manufacturers, Operators, Regulator(s), and Others

- Encourage and Facilitate Reporting
 - Provide Feedback
 - Provide Adequate Resources
 - Follow Through With Action

How The Regulator Can Help

- Emphasize importance of System issues in addition to (not instead of) worker issues
 - Encourage and participate in industry-wide "System Think"
- Facilitate collection and analysis of information
 - Clarify and announce policies for protecting information and those who provide it
 - Encourage other industry participants to do the same
 - Recognize that compliance is very important, but the mission is reducing systemic risk

Aviation Win-Win: Transferable to Other Industries?

- Other Transportation Modes
- Nuclear Power
- Chemical Manufacturing
- Petroleum Refining
- Financial Industries
- Healthcare
- Others

Thank You!!!

Questions?